

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 48 (2007) 1805–1808

Total synthesis of (\pm) -debromoflustramine B and E and (±)-debromoflustramide B based on one-pot intramolecular Ullmann coupling and Claisen rearrangement

Hiroshi Miyamoto,[†] Yoichiro Okawa, Atsuo Nakazaki and Susumu Kobayashi*

Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan

Received 14 December 2006; accepted 4 January 2007 Available online 7 January 2007

Abstract—Total syntheses of (\pm) -debromoflustramine B and (\pm) -debromoflustramide B were accomplished using a common and versatile intermediate spirocyclic oxindole 14, which was concisely prepared through intramolecular Ullmann coupling and Claisen rearrangement from iodoindole 13 on a multigram scale. $© 2007 Elsevier Ltd. All rights reserved.$

Pyrrolidinoindoline natural products, which possess the C -3a substituted hexahydropyrrolo $[2,3-b]$ indole ring system as a common framework, have been isolated from a wide variety of natural sources and exhibit a broad range of biological activities.^{[1](#page-2-0)} Flustramines are the simplest members of this family, most of which display interesting biological activities (Fig. 1).^{[2](#page-2-0)} For example, flustramine $B(1)^3$ $B(1)^3$ bearing two prenyl substituents at C-3a and N-8 was found in the marine bryozoan Flustra foliacea and exhibits muscle relaxant activity affecting

flustramine B $(1: R = Br, X = H₂)$ debromoflustramine B $(2: R = H, X = H_2)$ debromoflustramide B $(3: R = H, X = O)$

flustramine $E(4: R = Br)$ debromoflustramine E (**5**: R = H)

Figure 1.

0040-4039/\$ - see front matter © 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2007.01.002

skeletal and smooth muscle, 4 while debromoflustramine $E(5)$ $E(5)$ $E(5)$,⁵ which was detected in the skin of the Australian frog Pseudophyrne semimarmorata is a known antibacterial agent active against vancomycin-resistant Entero-cocci and methicillin-resistant Staphylococcus aureus.^{[6](#page-3-0)} The hexahydropyrrolo[2,3-b]indole nucleus, having a quaternary carbon prenylated at C-3a, is the defining structural feature of these alkaloids and therefore many efficient methods have been developed for their synthesis.^{[7](#page-3-0)}

We have recently described a stereoselective synthesis of racemic spiro[cyclohex-3-ene-1,3'-indol]- $2'(1'H)$ -one 8 from iodoindole 6 through a sequential intramolecular Ullmann coupling and Claisen rearrangement [\(Scheme](#page-1-0) [1\)](#page-1-0).[8](#page-3-0) The resulting spirocyclic derivatives are considered to be useful intermediates for the synthesis of pyrrolidinoindolines as oxidative cleavage of the cyclohexene ring would provide a C-3a substituted oxindole skeleton. In this Letter, we report the synthesis of a series of hexahydropyrrolo $[2,3-b]$ indole alkaloids, (\pm) -debromoflustramine B (2), (\pm) -debromoflustramine E (5) and (\pm) -debromoflustramide B (3) through intramolecular Ullmann coupling and Claisen rearrangement.

The synthesis of the key intermediate 14 was performed as illustrated in [Scheme 2](#page-1-0). Thus, indole 9 was subjected to a regioselective halogenation using Bergman's proto-col to afford 2-iodoindole 10 in high yield.^{[9](#page-3-0)} InCl₃-catalyzed conjugate addition of 10 with methyl vinyl ketone proceeded smoothly at an ambient temperature to afford 11,^{[10](#page-3-0)} which was protected with a benzyl group

Keywords: Oxindoles; Claisen rearrangement; Ullmann coupling; Total synthesis; Pyrrolidinoindoline alkaloids; One-pot reaction.

Corresponding author. Tel./fax: $+81$ 4 7121 3671; e-mail: kobayash@rs.noda.tus.ac.jp

⁻ Present address: Process Development Laboratories, Sankyo Co., Ltd., 1-12-1 Shinomiya, Hiratsuka-shi, Kanagawa 254-0014, Japan.

Scheme 1.

Scheme 2. Reagents and conditions: (a) (i) *n*-BuLi, THF, -78 °C, 30 min; then CO₂ gas, -78 °C, 10 min; (ii) *t*-BuLi, THF, -78 °C, 1 h; then 1,2diiodoethane, -78 °C , 1 h to room temperature, 86% ; (b) InCl₃, MVK, CH₂Cl₂, 0 °C, 1 h to room temperature, 3 h, 90%; (c) BnBr, KOH, DMF, 0 °C, 10 min, 91%; (d) vinylmagnesium bromide, THF, 0 °C, 10 min; (e) CuCl, 2-aminopyridine, NaOMe/MeOH (25 wt %), diglyme, 130 °C, 1 h, 77% from 12; (f) OsO4, NMO, t-BuOH/H2O (4:1), room temperature, 2 h; (g) NaIO4, THF/H2O (1:1), room temperature, 15 h; (h) NaClO2, NaH₂PO₄·2H₂O, 2-methyl-2-butene, THF/t-BuOH/H₂O (2:2:1), room temperature, 1 h; (i) Ph₃PCH₃Br, n-BuLi, THF, room temperature, 2.5 h, 75% from 14; (j) H₂SO₄, MgSO₄, 1,4-dioxane, 60 °C, 18 h; (k) ClCO₂Et, Et₃N, THF, 0 °C, 1 h; then MeNH₂/THF (2 M), -60 °C, 1 h, 65% from 17; (l) AlH₃·EtNMe₂, THF, -15 °C, 5 min, 89%.

to obtain indole ketone 12. Treatment of 12 with vinylmagnesium bromide provided the required 13, without any undesired deiodination product. Conversion of 13 to oxindole 14 was efficiently carried out on a multigram scale by a slight modification of our protocol: Crude 13 was treated with 10 mol % of each of CuCl and 2-aminopyridine and 2 equiv of NaOMe/MeOH (25 wt %) in

diglyme at 130 °C for 1 h. Intramolecular Ullmann coupling and Claisen rearrangement thus proceeded successively to give 14 in 77% yield based on 12.

Oxidative cleavage of the carbon–carbon double bond of 14 with $OsO₄–NaIO₄$ gave ketoaldehyde 15, which was further oxidized with $NaClO₂$ to obtain a carboxylic

Scheme 3. Reagents and conditions: (a) AH_3 EtNMe₂, THF, room temperature, 10 min, 87%; (b) Na, liq NH₃/THF, -78 °C, 15 min; then prenyl bromide, -78 °C, 30 min to room temperature, 92%; (c) Na, liq NH₃/THF, -78 °C, 15 min; then Ph₂O, *i*-PrOH, -78 °C to room temperature, 91%; (d) prenyl bromide, Na, liq NH₃/THF, $-78 \degree C$, 15 min; then Ph₂O, $-78 \degree C$ to room temperature, 65%.

acid 16. Ketoacid 16 was then converted into exo-methylene 17 by Wittig olefination with the ylide generated from methyltriphenylphosphonium bromide and n-BuLi in 75% yield from 14. Treatment of exo-methylene 17 with concd H_2SO_4 in the presence of $MgSO_4$ resulted in the desired isomerization to an internal olefin, affording 18 as a 20:1 mixture with 17. Carboxylic acid 18 was transformed to an amide 19, by the mixed anhydride method using ethyl chloroformate and MeNH2, in 65% yield from 17.^{7c} The lactam carbonyl group of 19 was reduced chemoselectively by an excess of AlH₃·EtNMe₂ complex at -15 °C for 5 min, to afford the cyclized amide 20 in 89% yield.^{7a}

For the synthesis of 21, which serves as a common precursor of (\pm) -debromoflustramine B and E, lactam 20 was further reduced with $\text{AlH}_3 \text{·EtNMe}_2$ complex, and the desired tricyclic compound 21 was obtained in 87% yield (Scheme 3).^{7a} Synthesis of (\pm) -debromoflustramine B from 21 was accomplished using a modification of Bruncko's protocol^{7b} as follows: N-benzyl derivative 21 was subjected to a Birch reduction with Na in liquid NH3, followed by the addition of prenyl bromide to the reaction mixture to obtain (\pm) -debromoflustramine B (2) in 92% yield. Synthesis of (\pm) -debromoflustramine E (5) was also carried out by Birch reduction and quenching the reaction mixture with $Ph₂O$ and *i*-PrOH, giving 5 in 91% yield.^{[11](#page-3-0)} Transformation of 20 to (\pm) debromoflustramide B (3) was best accomplished by Birch reduction in the presence of prenyl bromide, furnishing the product in 65% yield. The ¹H and ¹³C NMR spectra of our synthetic 2, 3 and 5 are consistent with the reported data. $\frac{7}{3}$

In conclusion, we have completed the total synthesis of (\pm) -debromoflustramine B and E and (\pm) -debromoflustramide B based on intramolecular Ullmann coupling and Claisen rearrangement. We also demonstrated the

utility of oxindole 14 as a synthetic intermediate of hexahydropyrrolo[2,3-b]indole alkaloids bearing a prenyl group at C-3a. Further applications of this methodology including a synthesis of optically active flustramines are in progress.

Acknowledgments

Support for this research was provided by Chugai Pharmaceutical Co., Ltd. (A.N.). We thank Professor Masanori Somei (Kanazawa University) for the helpful discussions.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at [doi:10.1016/j.tetlet.](http://dx.doi.org/10.1016/j.tetlet.2007.01.002) [2007.01.002.](http://dx.doi.org/10.1016/j.tetlet.2007.01.002)

References and notes

- 1. For reviews, see: Anthoni, U.; Christophersen, C.; Nielsen, P. H. In Alkaloids: Chemical and Biological Perspectives; Pelletier, S. W., Ed.; Wiley: New York, 1999; Vol. 13, pp 163–236.
- 2. (a) Wright, J. L. C. J. Nat. Prod. 1984, 47, 893–895; (b) Laycock, M. V.; Wright, J. L. C.; Findlay, J. A.; Patil, A. D. Can. J. Chem. 1986, 64, 1312–1316; (c) Holst, P. B.; Anthoni, U.; Christophersen, C.; Nielsen, P. H. J. Nat. Prod. 1994, 57, 997–1000; (d) Peters, L.; König, G. M.; Terlau, H.; Wright, A. D. J. Nat. Prod. 2002, 65, 1633– 1637.
- 3. (a) Carlé, J. S.; Christophersen, C. J. Am. Chem. Soc. 1979, 101, 4012-4013; (b) Carlé, J. S.; Christophersen, C. J. Org. Chem. 1980, 45, 1586–1589.
- 4. Sjöblom, T.; Bohlin, L.; Christophersen, C. Acta Pharm. Suec. 1983, 20, 415-418.
- 5. Smith, B. P.; Tyler, M. J.; Kaneko, T.; Garraffo, H. M.; Spande, T. F.; Daly, J. W. J. Nat. Prod. 2002, 65, 439– 447.
- 6. (a) Hodgson, J. W.; Mitchell, M. O.; Thomas, M. L.; Waters, K. F. Bioorg. Med. Chem. Lett. 1995, 5, 2527– 2528; (b) Dix, A. V.; Meseck, C. M.; Lowe, A. J.; Mitchell, M. O. Bioorg. Med. Chem. Lett. 2006, 16, 2522–2524.
- 7. For synthesis of enantiomerically pure pyrrolidinoindolines, see: (a) Kawasaki, T.; Shinada, M.; Kamimura, D.; Ohzono, M.; Ogawa, A. Chem. Commun. 2006, 420–422; (b) Bruncko, M.; Crich, D.; Samy, R. J. Org. Chem. 1994, 59, 5543-5549; (c) Morales-Ríos, M. S.; Rivera-Becerril, E.; Joseph-Nathan, P. Tetrahedron: Asymmetry 2005, 16, 2493–2499; (d) Cardoso, A. S.; Srinivasan, N.; Lobo, A. M.; Prabhakar, S. Tetrahedron Lett. 2001, 42, 6663–6666; For racemic synthesis, see: (e) López-Alvarado, P.; Caballero, E.; Avendaño, C.; Menéndez, J. C. Org. Lett. 2006, 8, 4303–4306; (f) Tan, G. H.; Zhu, X.; Ganesan, A.

Org. Lett. 2003, 5, 1801-1803; (g) Morales-Ríos, M. S.; Suárez-Castillo, O. R.; Trujillo-Serrato, J. J.; Joseph-Nathan, P. J. Org. Chem. 2001, 66, 1186–1192; (h) Morales-Ríos, M. S.; Suárez-Castillo, O. R.; Joseph-Nathan, P. Tetrahedron 2002, 58, 1479–1484; (i) Somei, M.; Yamada, F.; Izumi, T.; Nakajou, M. Heterocycles 1997, 45, 2327–2330; (j) Jensen, J.; Anthoni, U.; Christophersen, C.; Nielsen, P. H. Acta Chem. Scand. 1995, 49, 68–71; (k) Mitchell, M. O.; Dorroh, P. Tetrahedron Lett. 1991, 32, 7641–7642.

- 8. Miyamoto, H.; Okawa, Y.; Nakazaki, A.; Kobayashi, S. Angew. Chem., Int. Ed. 2006, 45, 2274–2277.
- 9. Bergman, J.; Venemalm, L. J. Org. Chem. 1992, 57, 2495– 2497.
- 10. Yadav, J. S.; Abraham, S.; Reddy, B. V. S.; Sabitha, G. Synthesis 2001, 2165–2169.
- 11. Huang, A.; Kodanko, J. J.; Overman, L. E. J. Am. Chem. Soc. 2004, 126, 14043-14053.